miércoles, 20 de octubre de 2010

TEOREMAS DE BOOLE




El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario “ º “ definido en éste juego de valores acepta un par de entradas y produce un solo valor booleano, por ejemplo, el operador booleano AND acepta dos entradas booleanas y produce una sola salida booleana.

Para cualquier sistema algebraico existen una serie de postulados iniciales, de aquí se pueden


deducir reglas adicionales, teoremas y otras propiedades del sistema, el álgebra booleana a menudo emplea los siguientes postulados:

Cerrado. El sistema booleano se considera cerrado con respecto a un operador binario si para cada par de valores booleanos se produce un solo resultado booleano.

Conmutativo. Se dice que un operador binario “ º “ es conmutativo si A º B = B º A para todos los posibles valores de A y B.

Asociativo. Se dice que un operador binario “ º “ es asociativo si (A º B) º C = A º (B º C) para todos los valores booleanos A, B, y C.

Distributivo. Dos operadores binarios “ º “ y “ % “ son distributivos si A º (B % C) = (A º B) % (A º C) para todos los valores booleanos A, B, y C.

Identidad. Un valor booleano I se dice que es un elemento de identidad con respecto a un operador binario “ º “ si A º I = A.

Inverso. Un valor booleano I es un elemento inverso con respecto a un operador booleano “ º “ si A º I = B, y B es diferente de A, es decir, B es el valor opuesto de A.

Para nuestros propósitos basaremos el álgebra booleana en el siguiente juego de operadores y valores:

- Los dos posibles valores en el sistema booleano son cero y uno, a menudo llamaremos a éstos valores respectivamente como falso y verdadero.

- El símbolo • representa la operación lógica AND. Cuando se utilicen nombres de variables de una sola letra se eliminará el símbolo •, por lo tanto AB representa la operación lógica AND entre las variables A y B, a esto también le llamamos el producto entre A y B.

- El símbolo “+” representa la operación lógica OR, decimos que A+B es la operación lógica OR entre A y B, también llamada la suma de A y B.

- El complemento lógico, negación ó NOT es un operador unitario, en éste texto utilizaremos el símbolo “ ‘ “ para denotar la negación lógica, por ejemplo, A’ denota la operación lógica NOT de A.

- Si varios operadores diferentes aparecen en una sola expresión booleana, el resultado de la expresión depende de la procedencia de los operadores, la cual es de mayor a menor, paréntesis, operador lógico NOT, operador lógico AND y operador lógico OR. Tanto el operador lógico AND como el OR son asociativos por la izquierda.

Si dos operadores con la misma procedencia están adyacentes, entonces se evalúan de izquierda a derecha. El operador lógico NOT es asociativo por la derecha.

Utilizaremos además los siguientes postulados:

P1 El álgebra booleana es cerrada bajo las operaciones AND, OR y NOT

P2 El elemento de identidad con respecto a • es uno y con respecto a + es cero. No existe elemento de identidad para el operador NOT

P3 Los operadores • y + son conmutativos.

P4 • y + son distributivos uno con respecto al otro, esto es, A• (B+C) = (A•B)+(A•C) y A+ (B•C) = (A+B) •(A+C).

P5 Para cada valor A existe un valor A’ tal que A•A’ = 0 y A+A’ = 1. Éste valor es el complemento lógico de A.

P6 • y + son ambos asociativos, ésto es, (AB) C = A (BC) y (A+B)+C = A+ (B+C).

Es posible probar todos los teoremas del álgebra booleana utilizando éstos postulados, además es buena idea familiarizarse con algunos de los teoremas más importantes de los cuales podemos mencionar los siguientes:

Teorema 1: A + A = A

Teorema 2: A • A = A

Teorema 3: A + 0 = A

Teorema 4: A • 1 = A

Teorema 5: A • 0 = 0

Teorema 6: A + 1 = 1

Teorema 7: (A + B)’ = A’ • B’

Teorema 8: (A • B)’ = A’ + B’

Teorema 9: A + A • B = A

Teorema 10: A • (A + B) = A

Teorema 11: A + A’B = A + B

Teorema 12: A’ • (A + B’) = A’B’

Teorema 13: AB + AB’ = A

Teorema 14: (A’ + B’) • (A’ + B) = A’

Teorema 15: A + A’ = 1

Teorema 16: A • A’ = 0

SISTEMA OCTAL


El sistema numérico en base 8 se llama octal y utiliza los dígitos 0 a 7.

Por ejemplo, el número 74 (en decimal) es 1001010 (en binario), lo agruparíamos como 1 / 001 / 010, de tal forma que obtengamos una serie de números en binario de 3 dígitos cada uno (para fragmentar el número se comienza desde el primero por la derecha y se parte de 3 en 3), después obtenemos el número en decimal de cada uno de los números en binario obtenidos: 1=1, 001=1 y 010=2. De modo que el número decimal 74 en octal es 112.

Hay que hacer notar que antes de poder pasar un número a octal es necesario pasar por el binario. Para llegar al resultado de 74 en octal se sigue esta serie: decimal -> binario -> octal.

En informática, a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales.

Es posible que la numeración octal se usara en el pasado en lugar del decimal, por ejemplo, para contar los espacios interdigitales o los dedos distintos de los pulgares.


Tabla de conversión entre decimal, binario, hexadecimal y octal
Decimal Binario Hexadecimal octal

SISTEMAS DE NUMERACION


SISTEMA BINARIO


Para otros usos de este término, véase Sistema binario (astronomía).
El sistema binario , en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es el que se utiliza en las computadoras, pues trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).

Historia del sistema binario

Página del artículo Explication de l'Arithmétique Binaire de Leibniz.El antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era.

Una serie completa de 8 trigramas y 64 hexagramas (análogos a 3 bit) y números binarios de 6 bit, eran conocidos en la antigua china en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizados en sistemas de adivinación tradicionales africanos, como el Ifá, así como en la geomancia medieval occidental.

Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo, fue desarrollado por el erudito y filósofo Chino Shao Yong en el siglo XI. Sin embargo, no hay ninguna prueba de que Shao entendiera el cómputo binario.

En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, las cuales podrían ser codificadas como variaciones apenas visibles en la fuente de cualquier texto arbitrario.

El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo diecisiete, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz usó el 0 y el 1, al igual que el sistema de numeración binario actual.

En 1854, el matemático británico George Boole publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.

[editar] Aplicaciones
En 1937, Claude Shannon realizó su tesis doctoral en el MIT, en la cual implementaba el Álgebra de Boole y aritmética binaria utilizando relés y conmutadores por primera vez en la historia. Titulada Un Análisis Simbólico de Circuitos Conmutadores y Relés, la tesis de Shannon básicamente fundó el diseño práctico de circuitos digitales.

En noviembre de 1937, George Stibitz, trabajando por aquel entonces en los Laboratorios Bell, construyó una computadora basada en relés —a la cual apodó "Modelo K" (porque la construyó en una cocina, en inglés "kitchen")— que utilizaba la suma binaria para realizar los cálculos. Los Laboratorios Bell autorizaron un completo programa de investigación a finales de 1938, con Stibitz al mando. El 8 de enero de 1940 terminaron el diseño de una Calculadora de Números Complejos, la cual era capaz de realizar cálculos con números complejos. En una demostración en la conferencia de la Sociedad Americana de Matemáticas, el 11 de septiembre de 1940, Stibitz logró enviar comandos de manera remota a la Calculadora de Números Complejos a través de la línea telefónica mediante un teletipo. Fue la primera máquina computadora utilizada de manera remota a través de la línea de teléfono. Algunos participantes de la conferencia que presenciaron la demostración fueron John Von Neumann, John Mauchly y Norbert Wiener, quien escribió acerca de dicho suceso en sus diferentes tipos de memorias en la cual alcanzó diferentes logros.

Véase también: Código binario
[editar] Representación
Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que suelen representar cualquier mecanismo capaz de estar en dos estados mutuamente excluyentes. Las siguientes secuencias de símbolos podrían ser interpretadas como el mismo valor numérico binario:

1 0 1 0 0 1 1 0 1 0
- - - - -
x o x o o x x o x o
y n y n n y y n y n
El valor numérico representado en cada caso depende del valor asignado a cada símbolo. En una computadora, los valores numéricos pueden representar dos voltajes diferentes; también pueden indicar polaridades magnéticas sobre un disco magnético. Un "positivo", "sí", o "sobre el estado" no es necesariamente el equivalente al valor numérico de uno; esto depende de la nomenclatura usada.

De acuerdo con la representación más habitual, que es usando números árabes, los números binarios comúnmente son escritos usando los símbolos 0 y 1. Los números binarios se escriben a menudo con subíndices, prefijos o sufijos para indicar su base. Las notaciones siguientes son equivalentes:

100101 binario (declaración explícita de formato)
100101b (un sufijo que indica formato binario)
100101B (un sufijo que indica formato binario)
bin 100101 (un prefijo que indica formato binario)
1001012 (un subíndice que indica base 2 (binaria) notación)
%100101 (un prefijo que indica formato binario)
0b100101 (un prefijo que indica formato binario, común en lenguajes de programación)
[editar] Conversión entre binario y decimal
[editar] Decimal a binario
Se divide el número del sistema decimal entre 2, cuyo resultado entero se vuelve a dividir entre 2, y así sucesivamente. Ordenados los restos, del último al primero, éste será el número binario que buscamos.

Ejemplo
Transformar el número decimal 131 en binario. El método es muy simple:
131 dividido entre 2 da 65 y el resto es igual a 1
65 dividido entre 2 da 32 y el resto es igual a 1
32 dividido entre 2 da 16 y el resto es igual a 0
16 dividido entre 2 da 8 y el resto es igual a 0
8 dividido entre 2 da 4 y el resto es igual a 0
4 dividido entre 2 da 2 y el resto es igual a 0
2 dividido entre 2 da 1 y el resto es igual a 0
1 dividido entre 2 da 0 y el resto es igual a 1
-> Ordenamos los restos, del último al primero: 10000011
En sistema binario, 131 se escribe 10000011

Ejemplo
Transformar el número decimal 100 en binario.


Otra forma de conversión consiste en un método parecido a la factorización en números primos. Es relativamente fácil dividir cualquier número entre 2. Este método consiste también en divisiones sucesivas. Dependiendo de si el número es par o impar, colocaremos un cero o un uno en la columna de la derecha. Si es impar, le restaremos uno y seguiremos dividiendo entre dos, hasta llegar a 1. Después sólo nos queda tomar el último resultado de la columna izquierda (que siempre será 1) y todos los de la columna de la derecha y ordenar los dígitos de abajo a arriba.

Ejemplo
1000
500
251 --> 1, 25-1=24 y seguimos dividiendo por 2
120
60
31
11 --> (100)10 = (1100100)2
Existe un último método denominado de distribución. Consiste en distribuir los unos necesarios entre las potencias sucesivas de 2 de modo que su suma resulte ser el número decimal a convertir. Sea por ejemplo el número 151, para el que se necesitarán las 8 primeras potencias de 2, ya que la siguiente, 28=256, es superior al número a convertir. Se comienza poniendo un 1 en 128, por lo que aún faltarán 23, 151 - 128 = 23, para llegar al 151. Este valor se conseguirá distribuyendo unos entre las potencias cuya suma dé el resultado buscado y poniendo ceros en el resto. En el ejemplo resultan ser las potencias 4, 2, 1 y 0, esto es, 16, 4, 2 y 1, respectivamente.

Ejemplo
20= 11
21= 21
22= 41
23= 80
24= 161
25= 320
26= 640
27= 1281 128 + 16 + 4 + 2 + 1 = (151)10 = (10010111)2
[editar] Decimal (con decimales) a binario
Para transformar un número del sistema decimal al sistema binario:

1.Se transforma la parte entera a binario. (Si la parte entera es 0 en binario será 0, si la parte entera es 1 en binario será 1, si la parte entera es 5 en binario será 101 y así sucesivamente).
2.Se sigue con la parte fraccionaria, multiplicando cada número por 2. Si el resultado obtenido es mayor o igual a 1 se anota como un uno (1) binario. Si es menor que



Ejemplo
0,3125 (decimal) => 0,0101 (binario).
Proceso:
0,3125 · 2 = 0,625 => 0
0,625 · 2 = 1,25 => 1
0,25 · 2 = 0,5 => 0
0,5 · 2 = 1 => 1
En orden: 0101 -> 0,0101 (binario)
Ejemplo
0,1 (decimal) => 0,0 0011 0011 ... (binario).
Proceso:
0,1 · 2 = 0,2 ==> 0
0,2 · 2 = 0,4 ==> 0
0,4 · 2 = 0,8 ==> 0
0,8 · 2 = 1,6 ==> 1
0,6 · 2 = 1,2 ==> 1
0,2 · 2 = 0,4 ==> 0 <--se repiten las cuatro cifras, periódicamente 0,4 · 2 = 0,8 ==> 0 <- 0,8 · 2 = 1,6 ==> 1 <- 0,6 · 2 = 1,2 ==> 1 <- ... En orden: 0 0011 0011 ... => 0,0 0011 0011 ... (binario periódico)
Ejemplo
5.5 = 5,5
5,5 (decimal) => 101,1 (binario).
Proceso:
5 => 101
0,5 · 2 = 1 => 1
En orden: 1 (un sólo digito fraccionario) -> 101,1 (binario)
Ejemplo
6,83 (decimal) => 110,110101000111 (binario).
Proceso:
6 => 110
0,83 · 2 = 1,66 => 1
0,66 · 2 = 1,32 => 1
0,32 · 2 = 0,64 => 0
0,64 · 2 = 1,28 => 1
0,28 · 2 = 0,56 => 0
0,56 · 2 = 1,12 => 1
0,12 · 2 = 0,24 => 0
0,24 · 2 = 0,48 => 0
0,48 · 2 = 0,96 => 0
0,96 · 2 = 1,92 => 1
0,92 · 2 = 1,84 => 1
0,84 · 2 = 1,68 => 1
En orden: 110101000111 (binario)
Parte entera: 110 (binario)
Encadenando parte entera y fraccionaria: 110,110101000111 (binario)

Mapa de Karnaugh

MAPA DE KARNAUGH


Un mapa de Karnaugh (también conocido como tabla de Karnaugh o diagrama de Veitch, abreviado como K-Mapa o KV-Mapa) es un diagrama utilizado para la simplificación de funciones algebraicas booleanas. El mapa de Karnaugh fue inventado en 1950 por Maurice Karnaugh, un físico y matemático de los laboratorios Bell.

Los mapas K aprovechan la capacidad del cerebro humano de trabajar mejor con patrones que con ecuaciones y otras formas de expresión analítica. Externamente, un mapa de Karnaugh consiste de una serie de cuadrados, cada uno de los cuales representa una línea de la tabla de verdad. Puesto que la tabla de verdad de una función de N variables posee 2N filas, el mapa K correspondiente debe poseer también 2N cuadrados. Cada cuadrado alberga un 0 ó un 1, dependiendo del valor que toma la función en cada fila. Las tablas de Karnaugh se pueden utilizar para funciones de hasta 6 variables.


X1 X3 54645454 0 4 5 1 X4 8 12 13 9 X2 10 14 15 11

2 6 7 3
Números correspondientes a las posiciones de la tabla de la verdad


Ejemplo mapa de Karnaugh:

X1
X3 _________
_________
0 1 1 1
X4 0 0 1 1
X2 0 0 1 0
1 1 0 0
Tabla de lazos que se pueden permitir, según las variables que contenga un mapa: MAPAS según su variable




v 1 2 4 8 16 32 64
2 2 1 C NA NA NA NA
3 3 2 1 C NA NA NA
4 4 3 2 1 C NA NA
5 5 4 3 2 1 C NA
6 6 5 4 3 2 1 C

v= variables
C= constantes
NA= no permitido

ECUACIONES BOOLEANAS


Ecuaciones Booleanas
Reducción de ecuaciones booleanas.



Se denomina función lógica o booleana a aquella función matemática cuyas variables son binarias y están unidas mediante los operadores del álgebra de Boole suma lógica (+), producto lógico (·) o negación('). Función Booleana
Una función booleana es una aplicación de A x A x A x....A en A, siendo A un conjunto cuyos elementos son 0 y 1 y tiene estructura de álgebra de Boole.
Existen distintas formas de representar una función lógica, entre las que podemos destacar las siguientes:
• Algebraica
• Por tabla de verdad
• Numérica
• Gráfica
Todas las variables y constantes del Álgebra booleana, admiten sólo uno de dos valores en sus entradas y salidas: Sí/No, 0/1 o Verdadero/Falso. Estos valores bivalentes y opuestos pueden ser representados por números binarios de un dígito (bits), por lo cual el Álgebra booleana se puede entender cómo el Álgebra del Sistema Binario. Todas las operaciones (representadas por símbolos determinados) pueden ser materializadas mediante elementos físicos de diferentes tipos (mecánicos, eléctricos, neumáticos o electrónicos) que admiten entradas binarias o lógicas y que devuelven una respuesta (salida) también binaria o lógica.

IMPORTANCIA

Implementar una ecuación booleana a través de un circuito lógico para obtener su tabla de verdad, reducir la ecuación a través de algebra booleanas e implementar la ecuación reducida para comprobar que cumple con la función de la ecuación original.

Equipo y material:

-Fuente de voltaje
-Multímetro
-Transistor 2N2222
-CI 7406 compuerta NOT
-CI 7408 compuerta AND
-CI 7432 compuerta OR
Dip Switch
6 resistencias de 330 ohm
3 resistencias de 1kohm
6 LED´s

martes, 19 de octubre de 2010

COMPUERTAS LOGICAS


COMPUERTAS LÓGICAS

Las computadoras digitales utilizan el sistema de números binarios, que tiene dos dígitos 0 y 1. Un dígito binario se denomina un bit. La información está representada en las computadoras digitales en grupos de bits. Utilizando diversas técnicas de codificación los grupos de bits pueden hacerse que representen no solamente números binarios sino también otros símbolos discretos cualesquiera, tales como dígitos decimales o letras de alfabeto. Utilizando arreglos binarios y diversas técnicas de codificación, los dígitos binarios o grupos de bits pueden utilizarse para desarrollar conjuntos completos de instrucciones para realizar diversos tipos de cálculos.

La información binaria se representa en un sistema digital por cantidades físicas denominadas señales, Las señales eléctricas tales como voltajes existen a través del sistema digital en cualquiera de dos valores reconocibles y representan una variable binaria igual a 1 o 0. Por ejemplo, un sistema digital particular puede emplear una señal de 3 volts para representar el binario "1" y 0.5 volts para el binario "0". La siguiente ilustración muestra un ejemplo de una señal binaria.


Como se muestra en la figura, cada valor binario tiene una desviación aceptable del valor nominal. La región intermedia entre las dos regiones permitidas se cruza solamente durante la transición de estado. Los terminales de entrada de un circuito digital aceptan señales binarias dentro de las tolerancias permitidas y los circuitos responden en los terminales de salida con señales binarias que caen dentro de las tolerancias permitidas.

La lógica binaria tiene que ver con variables binarias y con operaciones que toman un sentido lógico. La manipulación de información binaria se hace por circuitos lógicos que se denominan Compuertas.

Las compuertas son bloques del hardware que producen señales en binario 1 ó 0 cuando se satisfacen los requisitos de entrada lógica. Las diversas compuertas lógicas se encuentran comúnmente en sistemas de computadoras digitales. Cada compuerta tiene un símbolo gráfico diferente y su operación puede describirse por medio de una función algebraica. Las relaciones entrada - salida de las variables binarias para cada compuerta pueden representarse en forma tabular en una tabla de verdad.

A continuación se detallan los nombres, símbolos, gráficos, funciones algebraicas, y tablas de verdad de las compuertas más usadas.

Compuerta AND: (ver funcionamiento)

Cada compuerta tiene dos variables de entrada designadas por A y B y una salida binaria designada por x.
La compuerta AND produce la multiplicación lógica AND: esto es: la salida es 1 si la entrada A y la entrada B están ambas en el binario 1: de otra manera, la salida es 0.
Estas condiciones también son especificadas en la tabla de verdad para la compuerta AND. La tabla muestra que la salida x es 1 solamente cuando ambas entradas A y B están en 1.
El símbolo de operación algebraico de la función AND es el mismo que el símbolo de la multiplicación de la aritmética ordinaria (*).
Las compuertas AND pueden tener más de dos entradas y por definición, la salida es 1 si todas las entradas son 1.



Compuerta OR: (ver funcionamiento)

La compuerta OR produce la función sumadora, esto es, la salida es 1 si la entrada A o la entrada B o ambas entradas son 1; de otra manera, la salida es 0.
El símbolo algebraico de la función OR (+), es igual a la operación de aritmética de suma.
Las compuertas OR pueden tener más de dos entradas y por definición la salida es 1 si cualquier entrada es 1.


Compuerta NOT: (ver funcionamiento)

El circuito NOT es un inversor que invierte el nivel lógico de una señal binaria. Produce el NOT, o función complementaria. El símbolo algebraico utilizado para el complemento es una barra sobra el símbolo de la variable binaria.
Si la variable binaria posee un valor 0, la compuerta NOT cambia su estado al valor 1 y viceversa.
El círculo pequeño en la salida de un símbolo gráfico de un inversor designa un inversor lógico. Es decir cambia los valores binarios 1 a 0 y viceversa.


Compuerta Separador (yes):

Un símbolo triángulo por sí mismo designa un circuito separador, el cual no produce ninguna función lógica particular puesto que el valor binario de la salida es el mismo de la entrada.
Este circuito se utiliza simplemente para amplificación de la señal. Por ejemplo, un separador que utiliza 5 volt para el binario 1, producirá una salida de 5 volt cuando la entrada es 5 volt. Sin embargo, la corriente producida a la salida es muy superior a la corriente suministrada a la entrada de la misma.
De ésta manera, un separador puede excitar muchas otras compuertas que requieren una cantidad mayor de corriente que de otra manera no se encontraría en la pequeña cantidad de corriente aplicada a la entrada del separador.


Compuerta NAND: (ver funcionamiento)

Es el complemento de la función AND, como se indica por el símbolo gráfico, que consiste en una compuerta AND seguida por un pequeño círculo (quiere decir que invierte la señal).
La designación NAND se deriva de la abreviación NOT - AND. Una designación más adecuada habría sido AND invertido puesto que es la función AND la que se ha invertido.
Las compuertas NAND pueden tener más de dos entradas, y la salida es siempre el complemento de la función AND.


Compuerta NOR: (ver funcionamiento)

La compuerta NOR es el complemento de la compuerta OR y utiliza el símbolo de la compuerta OR seguido de un círculo pequeño (quiere decir que invierte la señal). Las compuertas NOR pueden tener más de dos entradas, y la salida es siempre el complemento de la función OR.







El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario “ º “ definido en éste juego de valores acepta un par de entradas y produce un solo valor booleano, por ejemplo, el operador booleano AND acepta dos entradas booleanas y produce una sola salida booleana.

Para cualquier sistema algebraico existen una serie de postulados iniciales, de aquí se pueden deducir reglas adicionales, teoremas y otras propiedades del sistema, el álgebra booleana a menudo emplea los siguientes postulados:

• Cerrado. El sistema booleano se considera cerrado con respecto a un operador binario si para cada par de valores booleanos se produce un solo resultado booleano.

• Conmutativo. Se dice que un operador binario “ º “ es conmutativo si A º B = B º A para todos los posibles valores de A y B.

• Asociativo. Se dice que un operador binario “ º “ es asociativo si (A º B) º C = A º (B º C) para todos los valores booleanos A, B, y C.

• Distributivo. Dos operadores binarios “ º “ y “ % “ son distributivos si A º (B % C) = (A º B) % (A º C) para todos los valores booleanos A, B, y C.

• Identidad. Un valor booleano I se dice que es un elemento de identidad con respecto a un operador binario “ º “ si A º I = A.

• Inverso. Un valor booleano I es un elemento inverso con respecto a un operador booleano “ º “ si A º I = B, y B es diferente de A, es decir, B es el valor opuesto de A.